Dan's notes, etc

\[\begin{array}{llcr} y &=& \sqrt{6 + \sec \left(\pi \cdot x^2\right)} \\ &=& \left(6 + \sec \left(\pi \cdot x^2\right)\right)^{1 \over 2} \\[2ex] &=& \left(\underbrace{6 + \sec \left(\pi \cdot x^2\right)}_{=u}\right)^{1 \over 2} & = u^{1 \over 2} \\[2ex] &=& ( \underbrace{6 + \sec (\pi \cdot x^2)}_{=u} )^{1 \over 2} & = u^{1 \over 2} \\[2ex] {dy \over du} &= & {1 \over 2} u^{-{1 \over 2}} \end{array}\]
\[\begin{array}{c} u & = & 6 & + & \sec &\underbrace{\left(\pi \cdot x^2 \right)}_{=v} \\ u & = & 6 & + & \sec & (v) \end{array}\]
\[\begin{array}{c} v &= & &\pi &\cdot& x^2 \\ {dv \over dx} &= &2&\pi &\cdot& x \\ \end{array}\]
\[{du \over dx} = (2\pi \cdot x)\tan(\pi \cdot x^2) \cdot \sec(\pi \cdot x^2)\] \[{dy \over du} = {1 \over 2}(u)^{-1/2}\] \[\begin{align} {dy \over dx} &= ((2\pi \cdot x)\tan(\pi \cdot x^2) \cdot \sec(\pi \cdot x^2))({1 \over 2}(6 + \sec(\pi\cdot x^2))^{-1/2}) \\ {dy \over dx} &= {1 \over 2}((2\pi \cdot x)\tan(\pi \cdot x^2) \cdot \sec(\pi \cdot x^2))((6 + \sec(\pi\cdot x^2))^{-1/2}) \\ {dy \over dx} &= \pi \cdot x\tan(\pi \cdot x^2) \cdot \sec(\pi \cdot x^2)(6 + \sec(\pi\cdot x^2)^{-1/2}) \end{align}\]